Current Issue : July-September Volume : 2022 Issue Number : 3 Articles : 5 Articles
Developing Field Programmable Gate Array (FPGA)-based applications is typically a slow and multi-skilled task. Research in tools to support application development has gradually reached a higher level. This paper describes an approach which aims to further raise the level at which an application developer works in developing FPGA-based implementations of image and video processing applications. The starting concept is a system of streamed soft coprocessors. We present a set of soft coprocessors which implement some of the key abstractions of Image Algebra. Our soft coprocessors are designed for easy chaining, and allow users to describe their application as a dataflow graph. A prototype implementation of a development environment, called SCoPeS, is presented. An application can be modified even during execution without requiring re-synthesis. The paper concludes with performance and resource utilization results for different implementations of a sample algorithm. We conclude that the soft coprocessor approach has the potential to deliver better performance than the soft processor approach, and can improve programmability over dedicated HDL cores for domain-specific applications while achieving competitive real time performance and utilization....
In recent years, with the growth of digital media and modern imaging equipment, the use of video processing algorithms and semantic film and image management has expanded. The usage of different video datasets in training artificial intelligence algorithms is also rapidly expanding in various fields. Due to the high volume of information in a video, its processing is still expensive for most hardware systems, mainly in terms of its required runtime and memory. Hence, the optimal selection of keyframes to minimize redundant information in video processing systems has become noteworthy in facilitating this problem. Eliminating some frames can simultaneously reduce the required computational load, hardware cost, memory and processing time of intelligent video-based systems. Based on the aforementioned reasons, this research proposes a method for selecting keyframes and adaptive cropping input video for human action recognition (HAR) systems. The proposed method combines edge detection, simple difference, adaptive thresholding and 1D and 2D average filter algorithms in a hierarchical method. Some HAR methods are trained with videos processed by the proposed method to assess its efficiency. The results demonstrate that the application of the proposed method increases the accuracy of the HAR system by up to 3% compared to random image selection and cropping methods. Additionally, for most cases, the proposed method reduces the training time of the used machine learning algorithm....
To solve the problems of low accuracy and high time cost in manual recording and statistics of basketball data, an automatic analysis method of motion action under the basketball sports scene based on the spatial temporal graph convolutional neural network is proposed. By using the graph structure in the data structure to model the joints and limbs of the human body, and using the spatial temporal graph structure to model the posture action, the extraction and estimation of human body posture in basketball sports scenes are realized. Then, training combined with transfer learning, the recognition of motion fuzzy posture is realized through the classification and application of a label subset. Finally, using the self-made OpenCV to collect and calibrate NBA basketball videos, the effectiveness of the proposed method is verified by analyzing the motion action. The results show that the proposed method based on the spatial temporal graph convolutional neural network can recognize all kinds of movements in different basketball scenes. The average recognition accuracy is more than 75%. It can be seen that the method has certain practical application value. Compared with the common motion analysis method feature descriptors, the motion action analysis method based on the spatial temporal graph convolution neural network has higher identification accuracy and can be used for motion action analysis in the actual basketball sports scenes....
Image superresolution (SR) is a classical issue in computer vision area. Recently, there are elaborated convolutional neural networks (CNNs) demonstrating remarkable effectiveness on image SR. However, most of the previous works lack effective exploration on the structural information, which plays a critical role for image quality. In this paper, we find that the hierarchical design can effectively restore the structural information and devise a multilevel feature exploration network for image SR (MFSR). Specially, we design an encoder-decoder architecture to concentrate on structural information from different levels and devise a spatial attention mechanism to address the inherent correlation among features for effective restoration. Experimental results show the proposedMFSR can restore more correct edges and lines and achieves both better objective and subjective performances than the state-of-the-art methods with higher PSNR/SSIM results, indicating the effectiveness on structural information restoration....
Partial differential equation (PDE) based surfaces own a lot of advantages, compared to other types of 3D representation. For instance, fewer variables are required to represent the same 3D shape; the position, tangent, and even curvature continuity between PDE surface patches can be naturally maintained when certain conditions are satisfied, and the physics-based nature is also kept. Although some works applied implicit PDEs to 3D surface reconstruction from images, there is little work on exploiting the explicit solutions of PDE to this topic, which is more efficient and accurate. In this paper, we propose a new method to apply the explicit solutions of a fourth-order partial differential equation to surface reconstruction from multi-view images. The method includes two stages: point clouds data are extracted from multi-view images in the first stage, which is followed by PDE-based surface reconstruction from the obtained point clouds data. Our computational experiments show that the reconstructed PDE surfaces exhibit good quality and can recover the ground truth with high accuracy. A comparison between various solutions with different complexity to the fourth-order PDE is also made to demonstrate the power and flexibility of our proposed explicit PDE for surface reconstruction from images....
Loading....